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Abstract

A model is developed that predicts branching architectures of polymers from radical polymerization with transfer to polymer and termination
by disproportionation and recombination, in a continuously stirred tank reactor (CSTR). It is a so-called conditional Monte Carlo (MC) method
generating architectures of molecules of specified dimensions. The relevant dimensions in the present case are the number of branch points, np,
and the number of combined parts a molecule consists of, nc. These branch points and combination points together are decisive for the connec-
tivity inside molecules. The modeling strategy is based on backtracking of the molecular growth history in terms of the chemical events deter-
mining connectivity, transfer to polymer and recombination termination. The recombination termination mechanism requires the model to
develop parts of the architecture following several paths back to the initial primary polymers that form the starting points for the molecules.
The algorithm requires the construction of probability density functions being evaluated using a fast Galerkin-FEM method. The architectures
generated by the conditional Monte Carlo method are compared to those from a full MC method using several qualifiers. One of these is the
number of initial primary polymers in a molecule as well as their lengths, another is the radius of gyration contraction factor. Perfect agreement
is found between the architectures found by the conditional and full MC methods.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The issue of branching architectures in terms of connectiv-
ity patterns between linear chain parts was already addressed
a long time ago, for instance by Zimm and Stockmeyer [1].
Even until today e 50 years later e the relationship derived
by these authors is still in use in characterization of branched
polymers. The since long recognized importance of this issue
is now also seen in recent developments in rheological model-
ing. A range of new rheological models have been proposed
being directly based on branching architectures, like the
‘pom-pom’ model from the group of McLeish [2,3]. Both
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radical polymerization of ethylene, where branching is caused
by transfer to polymer, and catalyzed ethylene polymerization,
where long branches are formed by insertion of chains with
unsaturated chain ends, have received considerable attention
[4e9]. This study will be devoted to radical polymerization
in a continuously stirred tank reactor (CSTR) with dispropor-
tionation and recombination as the termination mechanisms.

The main objective of our work is finding the architectures
in relation to kinetics. Moreover, our task of finding architec-
tures for molecules of specified dimensions has led to a special
view of the radical polymerization. A similar phenomenon
took place in the case of termination by disproportionation
only [10], where we noticed some interesting phenomena con-
cerning lengths of primary polymers (linear elements) and
sequence order of growth in one molecule. Length turns
out to decrease with increasing sequence number. This

mailto:piet@science.uva.nl
http://www.elsevier.com/locate/polymer


1771P.D. Iedema et al. / Polymer 48 (2007) 1770e1784
fact e hitherto unrealized e became fully understandable by
analyzing the problem at the level required to construct the
model. Similarly, in the present paper we observe some inter-
esting phenomena particularly due to the occurrence of recom-
bination termination. It has forced us to realize by which
chemical events e in this particular kinetic case e the con-
nectivity between the linear elements (primary polymers) is
determined. These events are transfer to polymer and recombi-
nation termination leading to two different types of connection
points: branch points and combination points. Now, one of the
factors determining the architecture turned out to be the partic-
ular sequence of termination by either disproportionation or
recombination. Finding the sequences is one of the ingredients
of the model that is being realized by backtracking the growth
history in inversed chronological order (Fig. 2). In this paper
we also show that the occurrence of one or the other event
in a growing molecule of certain dimensions (chain length,
number of branch points) is directly related to concentrations
of molecules of such dimensions. Concentration distributions
of both living and dead chains, being different due to the
recombination reaction, are involved.

As an alternative to this new method, molecular architec-
tures can also be found by a different Monte Carlo method, de-
veloped by Tobita [11e13], although that procedure does not
allow to do this for a molecule of given dimensions. In contrast
to our new method, Tobita’s method e in this article hereafter
called the full Monte Carlo method e generates samples of
molecules of varying dimensions, while in addition it provides
information by the most probable architectures belonging to
each of the molecules can be found. This then serves as a refer-
ence to our conditional Monte Carlo procedure e for smaller
molecules only. Finding statistically representative samples of
large molecules is a bottleneck in full MC, while it is not in
conditional MC, which is one of its advantages. To illustrate
this point, we here draw the attention to a result discussed at
the end of this paper, and presented in Fig. 17. This compares
the radius of gyration contraction factor as calculated from
two samples of 100,000 molecules of exactly identical chain
length and number of branch points, but one made without
and the other with recombination termination under the same
kinetic conditions. The question was to find out whether one
kind of molecules was more compact than the other. These
sets were easily generated by conditional Monte Carlo, while
it is evident that creating sets of molecules with exactly identi-
cal dimensions is practically impossible with full Monte Carlo.
It is obvious that the conditional method requires the a priori
knowledge of the concentration distribution of chain length,
number of primary polymers (number of branch points) and
number of combination points. Several methods to find this
2D-solution have been discussed by us in previous work [14]
and will here be referred to. In addition, the probability density
functions used in the history backtracking algorithm have to be
constructed and we will show that this leads to a considerable
combinatorial problem, requiring a specific solution, based
on a Galerkin-FEM method (cf. PREDICI� [14]).

A note of caution must be made concerning the fact that in
this work we will assume that the rate coefficients of termina-
tion are independent of the length of the macro-radicals in-
volved. In radical polymerization science it is, however,
commonly accepted that the rate of termination is often con-
trolled by diffusion and hence does depend on chain length
[15]. This will influence the distributions of chain length, num-
ber of branch points and number of combination points. After
having explained the structure of the algorithms, in the course
of this article we will provide the arguments indicating that an
extension to chain length dependent termination is straightfor-
ward. For the sake of simplicity and also to be able to compare
to full Monte Carlo sampling, we have chosen to employ ter-
mination coefficients that are independent of chain length.

This article is structured as follows. After an explanation of
the terminology defining the dimensions of molecules the his-
tory backtracking algorithm is introduced, together with the
required probability density functions. This is followed by
a description of the algorithm that constructs the architectures
from the molecular growth histories. This is completed by
a section where the probability density functions are derived.
The first part of Section 8 reports on the comparison of the
probability density functions as calculated from Galerkin
FEM and as they may be inferred from full Monte Carlo sim-
ulations. Finally, the architectures from the full and condi-
tional Monte Carlo methods will be compared and discussed
using various architectural qualifiers, among which the radius
of gyration contraction factor [10].

2. Architectures generation by conditional Monte Carlo
sampling

The conditional Monte Carlo algorithm is based on the chem-
istry of the radical polymerization system as briefly summarized
in the reaction and population balance equations in Table 1. The
Table 1

Initiator dissociation I2 /
kd

2I

Initiation I þM /
ki

R1;0;0

Propagation Rn;i;k þM /
kp

Rnþ1;i;k

Termination by disproportionation Rn;i;k þ Rm;j;l /
ktd

Pn;i;k þ Pm;j;l

Termination by recombination Rn;i;k þ Rm;j;l /
ktc

Pnþm;iþj;kþlþ1

Transfer to polymer Rn;i;k þ Pm;j;l /
ktpm

Pn;i;k þ Rm;jþ1;l

Population balance equations dRn;i;k=dt ¼ kpMð�Rn;i;k þ Rn�1;i;kÞ � ðktd þ ktcÞl0Rn;i;k þ ktpð�m1Rn;i;k þ l0nPn;i�1;kÞ � 1=tRn;i;k

dPn;i;k=dt ¼ ktdl0Rn;i;k þ 1=2ktc

Pn�1
m¼1

Pi
j¼0

Pk�1
l¼0 Rm;j;lRn�m;i�j;k�l�1 þ ktpðm1Rn;i;k � l0nPn;i;kÞ � 1=tPn;i;k

m, n: chain length; i, j: number of branch points per chain; k, l: number of combination sites per chain.
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solution of the balance equations, for instance by the direct
solution method as described in previous work [14], is supposed
to have provided us with the 3D chain length, n, number of
branch points, i, number of combination points, k, distribution
for dead and living chains, P(n,i,k) and R(n,i,k), respectively.
Now it should be noted that in the algorithm we do use length,
n, number of primary polymers, np, and number of combined
part, nc, instead of branch points and combination points. A pri-
mary polymer in this work is defined as a single linear element
created by initiation or transfer to polymer, propagation and
termination. Hence, according to this terminology a linear chain
created by initiation at two sites, propagation and recombination
termination counts as two (connected) primary polymers. This
definition differs from that in the full Monte Carlo approach
[11e13], where such an element counts for one. The relations
between the number of combination points, k, and branch points,
i, as appearing in the population balances, and the number of
combined parts, nc, and primary polymers, np, are, respectively:

nc ¼ kþ 1 ð1Þ

np ¼ iþ kþ 1 ð2Þ

We prefer working with np and nc over i and k, since simple
additivity holds for the former. The 3D-distributions P(n,np,nc)
and R(n,np,nc) are inferred from P(n,i,k) and R(n,i,k) in
a straightforward way.

3. The architecture generation algorithm

In order to construct the architecture of a branched mole-
cule, like in the case of disproportionation only, we firstly
need to find the correct sequences and lengths of the primary
polymers, and then secondly build up the architectures. To
perform the first task, we had to develop a new algorithm,
the history backtracking algorithm. This algorithm will now
be described. Later we show how to construct the architectures
from the resulting primary polymer sequences and lengths.
It should be realized that this algorithm rigorously and fully
reflects the chemistry that leads to a particular structure.

4. History backtracking algorithm

4.1. Growth without or with recombination

This algorithm is similar to sequence/length finding in the
case without recombination termination in the sense that it
starts with a molecule of specified length, n, number of pri-
mary polymers, np, and number of combined parts, nc. The
basic idea that all the chemical events ultimately leading to
a complete molecule are backtracked, one-by-one, is the
same. In the case of disproportionation termination only the
chemical events leading to a new primary polymer, transfer
to polymer, subsequent propagation and termination, could
mathematically be captured in one step, employing just one
probability density function to determine the lengths of the
primary polymer and the structure to which it is attached.
Backtracking of the growth history then turned out to be rela-
tively easy.

In the present case we have to deal with such a growth
process, leading to a new primary polymer as well, but here
it is intertwined with a combination process. This complicates
the history backtracking.

Growth of a molecule may be initiated at different sites and
different instants in time, leading to several initial primary
polymers. Thus, several independently growing structures exist
with separate growth histories that on some point in time
merge with others. Only from these points on the structures
have their growth process in common. Consequently, the algo-
rithm in backtracking the growth history starts with the com-
mon history, but soon has to branch into different paths to
backtrack the individual partial growth history until the initial
primary polymers. We will now present the algorithm, of
which a flowchart is shown in Fig. 1, and subsequently illus-
trate it with an exemplary molecule. The probability density
functions employed by it will be defined along this explana-
tion, but their derivation will be reported in a later section.

� Start of the algorithm: recombination test. The history
backtracking algorithm starts with a dead molecule of
given dimensions, n, np, nc. As in most radical polymeriza-
tion systems, we are mostly interested in dead molecules.
For such molecules the final chemical event before leaving
the reactor is always the reaction from its living predeces-
sor(s) to the dead form either by termination or by transfer
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Fig. 1. Flowchart of the growth history backtracking algorithm.
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to polymer. In the case of disproportionation termination
and transfer the dead molecule’s dimensions are identical
to those of the living one, in case of recombination termi-
nation it is the sum of the two combining molecules. The
probability that the last event is a recombination step is
a function of n, np and nc of the specified molecule, and
we define it as <cðn; np; ncÞ, which is a number between
0 and 1. By choosing a random number between 0 and
1, r, we have recombination as the last event, if r<<c,
and disproportionation/transfer otherwise. This step takes
place in the upper diamond block of the flowchart, Fig. 1.
� Last step is no recombination. We proceed now with ex-

plaining the case of no recombination, indicated as the
path on right-hand side in the flowchart. Here, it should
be realized that living molecules of n, np and nc are created
from smaller dead molecules with np� 1 primary poly-
mers by a transfer to polymer step and a consecutive
growth step. This part of the algorithm is exactly identical
to that without recombination [10]. The specifications of
the newly grown primary polymer, part 1 with length n2,
and the molecular structure on which it grows, part 2
with length n1, number of primary polymers np1¼ np� 1,
follow the probability density function <t1ðn1jn; np; ncÞ.
This pdf defines the probability that given the specifica-
tions of the resulting molecule, n, np and nc, the length
of part 1 equals n1 (and part 2 the complementary length
n2¼ n� n1). As shown in the flowchart (rectangular block
on RHS) this step results in the identification of a dead
molecular structure of specified dimensions and a primary
polymer of known length (marked with the oval banner)
attached to it at a yet unknown position. The algorithm
then proceeds with testing the dimensions of the larger
dead structure, as indicated in the upper diamond block
on RHS. If it turns out that the molecule consists of only
one primary polymer, np¼ 1, this path terminates with
the identification of another primary polymer, which is
in this case an initial primary polymer. If this is not the
case, then the algorithm proceeds with another test (lower
diamond block on RHS). If the molecule has more than
one combination part, then the algorithm returns to the re-
combination test (upper diamond block) and a new round
is started. If nc¼ 1, then no combination points are left in
the molecule and the combination test can be omitted. In
that case the algorithm directly returns to the routine
where the lengths are identified to the last grown primary
polymer and the structure on which it grows (upper rectan-
gular block on RHS).
� Last step is recombination. If the recombination test re-

veals that the last step was a combination step, the algo-
rithm takes the path on left-hand side of the flowchart.
The task carried out here (rectangular block on LHS) is
to find the dimensions of the two parts from all the possi-
ble combinations that add up to the prevailing dimensions
of the molecule, n, np and nc. Hence, a 3D sampling prob-
lem is at hand. We decided to perform this using three 1D
probability density functions in a (arbitrary) sequence. The
first pdf determines the number of combination points, nc1
and nc2, of the two parts: <ðnc1jn; np; ncÞ. This function
defines the probability that given n, np and nc, the number
of combination points on part 1 equals nc1 (and the com-
plementary number nc2¼ nc� nc1 on part 2). This yields
nc1 and nc2. A second pdf is employed to find the number
of primary polymers, np1 and np2: <ðnp1jn; np; nc1; nc2Þ,
which defines the probability that given n and np of
the complete molecule and nc1 and nc2 of the parts the
number of primary polymers of part 1 equals np1 (and
the complementary number np2¼ np� np1 on part 2).
Finally, the lengths n1 and n2 are determined using
<ðn1jn; np1; np2; nc1; nc2Þ, the probability that part 1 has
length n1 (n2¼ n� n1 for part 2) given total length n
and nc1, nc2, np1, np2 of the parts. After this step we end
up with two parts being living molecules with specifica-
tions n1, nc1, np1 and n2, nc2, np2.

The algorithm continues by testing the dimensions of the
two parts (diamond block at LHS). If only one part consists
of one primary polymer, npi¼ 1, then this primary polymer
has been fully identified. In that case the primary polymer is
not an initial one. If both parts consist of one primary polymer,
both are fully identified and in that case two initial primary
polymers are found; then this path of the algorithm is termi-
nated. The algorithm continues for the one or two parts that
have npi> 1. For each part the last event before recombination
was a transfer to polymer step followed by propagation.
Hence, the lengths of the primary polymer last grown and
the structure on which it grows should be determined in the
manner already described. Consequently, the algorithm e for
one or two parts e enters the routine denoted in the flowchart
by the rectangular block on RHS. If there are two parts to be
further unraveled, and then it is here that the algorithm
branches into two independent paths.

Thus, all the paths of the algorithm are worked through for
this molecule, yielding all the parts with their lengths, number
of primary polymers and combination points specified.

4.2. Backtracking example

The growth history backtracking algorithm is now demon-
strated on a molecular example as shown in Fig. 2, cartoon 1.
Its dimensions are: n (we will not specify it in this demonstra-
tion), np¼ 15, nc¼ 7. The recombination test for this mole-
cule, using <cðn; np; ncÞ, revealed that the last event was a
recombination step. The dimensions of the two parts are
then identified using <ðnc1jn; np; ncÞ, <ðnp1jn; np; nc1; nc2Þ
and <ðn1jn; np1; np2; nc1; nc2Þ. The result is shown in cartoon
2: one part is a single primary polymer with length n1 that
is now fully identified, the other part is a larger structure of di-
mensions (n2,14,6). Next, as shown in cartoon 3, the lengths of
the last grown primary polymer, n1, and that of the structure on
which it grows, n2, are determined, using <t1ðn1jn; np; ncÞ.
This yields a fully identified primary polymer again and
a structure of dimensions (n2,13,6). At this point the algorithm
returns to the recombination test and a new round is entered.
As shown in cartoon 4, again the last step turns out to be
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recombination, this time resulting in two larger structures of
dimensions (n1,7,3) and (n2,6,3). Now, the algorithm branches
into two paths that are worked through one after another.
Fig. 2 shows only one of these parts, that of structure
(n2,6,3). In cartoon 5, for this part, the result is shown of the
transfer to polymer and growth step immediately preceding
the recombination step of cartoon 4. Using <t1ðn1jn; np; ncÞ
the lengths of the primary polymer (n1) and the larger structure
(n2,5,3) involved are now identified. At this point once again
the algorithm returns to the recombination test. This time
the last event is identified as a disproportionation/transfer
step (cartoon 6), yielding a primary polymer of n1 and a larger
structure (n2,4,3). The algorithm then enters a new round again
and the recombination test finds a recombination event as the
last step, yielding two parts: (n1,1,1) (single primary polymer)
and (n2,3,2), see cartoon 7. The lengths of the primary polymer
last grown and the structure on which it grows are determined,

n1,1,1

n,15,7 n2,14,6

n2,13,6

n1,1,1

n2,6,3

n1,7,3

n2,5,3

n1,1,1

n1,1,1 n1,1,1

n2,4,3 n2,3,2

n2,2,2

n1,1,1

n2,1,1

n1,1,1

Branch point

Combination point

21

3 4

5 6 7

8 9

Fig. 2. Illustration of the algorithm. (1) Example molecule of length n, 15 pri-

mary polymers, 7 combination parts. (2) First step (last chemical event in the

molecule) is recombination; identification of parts, one of these is a single pp

of length n1. (3) Identification of pp grown on larger structure prior to combi-

nation event of 2. (4) Recombination step; identification of two larger struc-

tures. (5) Identification of pp grown on one of the larger structures in 4. (6)

This step is a disproportionation/transfer event. (7) Recombination step. (8)

Disproportionation/transfer step. (9) Recombination step; this path of the algo-

rithm ends up with two initial pp’s. The algorithm continues with unraveling

the other structure identified in step 4 (not shown).
see cartoon 8. At this point the algorithm enters the last round
with a structure (n,2,2). For a molecule of this dimensions the
last event must be a recombination step (or <cðn; 2; 2Þ ¼ 1, for
n> 1). Thus, the algorithm terminates this path by identifying
two (initial) primary polymers as shown in cartoon 9. Subse-
quently, the algorithm picks up a new path, in this example
for the structure (n1,7,3) of cartoon 4. After having unraveled
this part, the algorithm stops, since for this example all pri-
mary polymer lengths and their sequences per path are known.

5. Generating architectures

The construction of architectures from the primary poly-
mers is basically the same as the one described in our previous
work [10] on the case of disproportionation only, except for
the fact that now sequences per path and connectivity between
pairs of primary polymers have to be included. To this end the
history backtracking algorithm stores as the necessary identi-
fiers per primary polymer: a (arbitrary) row number ranging
from 1 to np; a growth sequence number per path; (eventually)
the row number of primary polymer to which it is connected
by a combination point e the connection identifier.

The construction algorithm is schematically shown in
Fig. 3. N counts the number of primary polymers incorporated
in the structure; obviously the algorithm stops when N¼ np,
the total number of primary polymers in the molecule. The al-
gorithm starts by arbitrarily selecting one of the initial primary
polymers. A test then is performed, using the connection iden-
tifier, whether it is connected to another primary polymer. If
so, the connected structure of two primary polymers is formed,
and N increases by one. If N< np, the algorithm continues by
selecting the primary polymer next in sequence; it is attached
on an arbitrary monomer unit of the structure already formed.
If N< np, a test follows, to check whether the primary polymer
is connected to another primary polymer. If not, then a new
primary polymer is selected. A subsequent test checks whether
this connecting primary polymer is a single one, in which case
it is connected (N increases by one) and e if N< np e the al-
gorithm returns to selecting a new primary polymer next in se-
quence. The test may also reveal that the connecting primary
polymer is not single but instead has grown on an intermediate
structure that was started from another initial polymer. In this
case a test follows, whether this structure already has been
developed in a previous round of the algorithm. If not, the
algorithm stores the structure found so far as an intermediate
structure and returns to selecting a new initial primary poly-
mer. If instead the intermediate structure to be connected to
was already known, the coupling actually takes place and
the algorithm e if N< np e returns to selecting a new primary
polymer next in sequence. The algorithm continues until, at
some point, N becomes equal to np and then it terminates.

6. Probability density functions

As regards transfer to polymer we realize that living mole-
cules of n, np and nc, are created from smaller dead molecules
with np� 1 primary polymers by a transfer to polymer step
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and a consecutive growth step producing a new primary poly-
mer of length n1. In the first step from a dead chain of n� n1,
np� 1, nc, a living chain of the same length and number of
combination parts and np primary polymers is created with
probability p1:

p1

�
n� n1;np � 1;nc

�
wðn� n1ÞP

�
n� n1;np � 1;nc

�
ð3Þ

Here, P is the 3D-distribution of length, number of primary
polymers and number of combination parts of dead molecules
as calculated from the Galerkin-FEM procedure. In p1, the
multiplication by n� n1 arises from the fact that any of the
n� n1 units of the molecule can undergo this step. The second
step is growth of a new arm by propagation at the new branch
point to length n1 until termination. The probability, p2, of cre-
ating an arm length n1 obeys the Flory distribution (the same
as the one sampled from in the full MC algorithm):

p2ðn1ÞwpFðn1Þ ¼
ð1� 1=nÞðn�1Þ

n
ð4Þ

where the average primary polymer length n is given by [2]:
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Fig. 3. Flowchart of the construction algorithm.
n¼ kpMIþ ktpm1l0þ kpMl0

l0

�
ktpm1þ ktdl0þ ktcl0 þ 1=t

�
:

ð5Þ

The probability of thus creating a dead molecule of total
length n and np primary polymers is simply the product of
p1 and p2, since length n1 is independent of length n� n1.
Hence, for the conditional probability that a dead chain is cre-
ated from a dead chain of n� n1, np� 1, nc and subsequent
growth of an arm of length n1 we can write:

p
�
n1

��n;np;nc

�
wðn� n1ÞP

�
n� n1;np � 1;nc

�
pFðn1Þ: ð6Þ

Now, following this argument we state that a molecule of n, np,
nc can be created from any molecule with np� 1 primary poly-
mers of (shorter) length n� n1 undergoing transfer to polymer
and subsequent growth of an arm with the complementary
length n1. According to Eq. (6) the probability of the various
combinations is proportional to ðn� n1ÞPðn� n1; np � 1; ncÞ
pFðn1Þ. Hence, given the length n of the original molecule
with np� 1 primary polymers, the probability distribution of
arm length n1, <t1ðn1jn; np; ncÞ, obeys the following probabil-
ity distribution function (pdf):

<t1

�
n1

��n;np;nc

�
¼

pFðn1ÞP
�
n� n1;np� 1;nc

�
ðn� n1ÞPn�1

n1¼1 pFðn1ÞP
�
n� n1;np� 1;nc

�
ðn� n1Þ:

ð7Þ

This result is exactly identical to that for the case without
recombination termination [10].

In order to determine, whether the last chemical event hav-
ing occurred in a dead molecule before leaving the reactor was
a termination by recombination or another termination step,
the reaction rates of both termination possibilities have to be
known. According to the reaction mechanisms in Table 1, liv-
ing chains may terminate by disproportionation/recombination
or by transfer to polymer. The reaction rate of recombination
termination for molecules of dimensions n, np and nc is given
by the following sum:

rc

�
n;np;nc

�
¼ ktc

Xn�1

n1¼1

Xnp

np1¼1

Xnc

nc1¼1

R
�
n1;np1;nc1

�
R
�
n2;np2;nc2

�
;

n2 ¼ n� n1;np2 ¼ np� np1;nc2 ¼ nc� nc1 ð8Þ

Here, R is the 3D-distribution of length, number of primary
polymers and number of combination parts of living mole-
cules as calculated from the Galerkin-FEM procedure. The
total rate of reaction for termination by disproportionation
and transfer to polymer for molecules of the same dimensions
is as follows as:

rdt

�
n;np;nc

�
¼
�
ktdl0þ ktpm1

�
R
�
n;np;nc

�
ð9Þ

The probability that a dead molecule of these dimensions is
created by recombination follows from the ratio between these
two rates:
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<c

�
n;np;nc

�
¼ 1=

�
1þ rc

�
n;np;nc

��
rdt

�
n;np;nc

��
: ð10Þ

Next follows the derivation of the probability density function
describing the characteristics of the pairs of molecular parts
involved in a combination step. The probability density func-
tion describing the probability that a dead molecule of dimen-
sions n, np and nc is the product of the reaction between two
living molecules, of which one has nc1 combination parts
(and the other nc� nc1) is given by:

<
�
nc1

��n;np;nc

�

¼
Pn�1

n1¼1

Pnp

np1¼1 R
�
n1;np1;nc1

�
R
�
n2;np2;nc2

�
Pnc

nc1

Pn�1
n1¼1

Pnp

np1¼1 R
�
n1;np1;nc1

�
R
�
n2;np2;nc2

�;
n2 ¼ n� n1;np2 ¼ np � np1;nc2 ¼ nc� nc1: ð11Þ

The following probability density function defines the proba-
bility that given n and np of the complete molecule and nc1

and nc2 of the parts the number of primary polymers of part
1 equals np1 (and the complementary number np2¼ np� np1

on part 2):

<
�
np1

��n;np;nc1;nc2

�

¼
Pn�1

n1¼1 R
�
n1;np1;nc1

�
R
�
n2;np2;nc2

�
Pnp

np1¼1

Pn�1
n1¼1 R

�
n1;np1;nc1

�
R
�
n2;np2;nc2

�;
n2 ¼ n� n1;np2 ¼ np� np1;nc2 ¼ nc� nc1: ð12Þ
Finally, the probability that part 1 has length n1

(n2¼ n� n1 for part 2) given total length n and nc1, nc2, np1,
np2 of the parts is expressed by the following probability
density function:

<
�
n1

��n;np1;np2;nc1;nc2

�

¼
R
�
n1;np1;nc1

�
R
�
n2;np2;nc2

�
Pn�1

n1¼1 R
�
n1;np1;nc1

�
R
�
n2;np2;nc2

�;
n2 ¼ n� n1;np2 ¼ np� np1;nc2 ¼ nc� nc1: ð13Þ
Now, to find the rate rcðn; np; ncÞ and the pdf

<ðnc1jn; np; ncÞ, Eqs. (8) and (11) poses us a huge combinato-
rial problem, since in principle all possible combinations of
chain length, number of primary polymers and number of
combined parts have to be computed in order to find the con-
volution sums. We have developed an efficient method that
completes this task at acceptable computational effort. It em-
ploys the leading moments of the individual distributions
R(n,np,nc) in combination with a global representation of the
convolution sums. The details of this method are presented
in Appendix.

Now, having explained the new algorithms, we briefly
draw the attention to the impact of the fact that termination
is diffusion controlled leading to a chain length dependent ter-
mination rate [15]. We can now see that under such circum-
stances the reaction steps that lead to the ultimate branched
structure, transfer to polymer and recombination termination,
are the same as in the case without chain length dependent ter-
mination. It is the relative probabilities of these steps e as
expressed in the various probability density functions e that
indeed are changing. Hence, the algorithms fully cover the
chain length dependent termination case, but the pdf’s have
to be reconstructed on the basis of available relationships be-
tween chain length of macro-radicals and rate coefficients.

7. How to analyze primary polymer sequences and
lengths

As in the disproportionation only case, we dispense with
the explicit chronology of growth times of primary polymers
(or residence times), again assuming that the sequence of
events is the decisive factor. The existence of just one unique
sequence per molecule of given number of primary polymers
in the case of disproportionation only allowed us to compare
primary polymer lengths as varying (decreasing) with se-
quence order between full and conditional Monte Carlo simu-
lations. Now, the previous explanation of the algorithms
applicable to the recombination case may have revealed that
molecules of given dimensions may have different sequences.
This complicates the comparison to the full Monte Carlo sam-
pling method, since lengths as a function of sequence order
cannot be determined in a straightforward manner. On the
other hand, the particular sequencing structure of a molecule
also provides information about its architecture. We will use
this information in the sense that we will record the number
of initial primary polymers in a molecule, which in fact equals
the number of sequences. As regards lengths of primary poly-
mers, it is still possible to compare the lengths of the primary
polymer formed in the last event, as well as the lengths of the
initial primary polymers. We will indeed give a report on these
quantities in the following section.

8. Results

Reaction equations, population balances, kinetic and simu-
lation data for both full and conditional MC algorithms are
listed in Tables 1e3. All results have been obtained using
this data set. The essential part of the full MC algorithm
was implemented according to the original description pub-
lished by Tobita [11e13]. However, in order to obtain the ex-
plicit graph theoretical description of the generated molecules

Table 2

Kinetic and simulation data

Symbol Value Unit

Dissociation kd 0.5 s�1

Propagation kp 5000 m3 kmol�1 s�1

Disproportionation termination ktd 5� 106

Recombination termination ktc 5� 106

Transfer to polymer ktp 1.5

Average residence time CSTR t 30 s

Feed monomer concentration Mf 16.75 kmol m�3

Feed initiator concentration I2,f 5� 10�3

Monomer concentration M 9.1067022

Macro-radical concentration l0 5.58850� 10�6

Incorporated monomer

concentration

m1 7.638741575
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we had to add new features to the algorithm. We also observed
that a fair amount of extra computation time was associated
with these extra features.

The overall chain length and number of branch points dis-
tributions for the conditions listed in Tables 1e3 have already
been presented before [9,10]. Since the specific chain length
and number of primary polymer distributions for molecules
consisting of 11 combination parts, nc¼ 11, will serve as
a test case for the conditional Monte Carlo simulations, we
present these as resulting from the Galerkin-FEM calculations
and full Monte Carlo simulations in Figs. 4 and 5. Note that
the chain length distribution is the weighted concentration dis-
tribution of dead chains,

PN
np¼20 nPðn; np; nc ¼ 11Þ, which is

directly comparable to the distribution of the sample from
full Monte Carlo simulations with nc¼ 11, in view of the
weight fraction sampling procedure in those simulations.
Note that the lowest possible number of primary polymers,
np, for nc¼ 11 equals 20. Similarly, the number of primary
polymers’ distribution shown is a weighted distribution,PN

n¼20 nPðn; np; nc ¼ 11Þ. The value 20 as the lower chain
length limit in the summation is a theoretical one, the practical
one being much higher. Apart from scatter due to the limited
full Monte Carlo sample size (45,563 molecules), both distri-
butions coincide. All quantities to be calculated for the full

Table 3

Full Monte Carlo simulation parameters

MC simulation

parameter

Formula Value

Number

average

chain length

n (Eq. (3)) 676.807243

Average

branching

density

r ¼ ktpm1t 2.5148257� 10�4

Branching

probability

Pb ¼ ktpl0= ðktp þ ktd þ ktcÞl0 þ ktpm1g
�

0.170145237

Recombination

probability

Pc ¼ ktcl
2
0= ðktc þ ktdÞl2

0 þ ktpl0m1g
�

0.41492738
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Fig. 4. Weighted chain length distribution, nPnðnc ¼ 11Þ ¼
PN

np¼20 nPðn;
np; nc ¼ 11Þ, of dead molecules consisting of 11 parts from Galerkin-FEM

method and full Monte Carlo simulations for conditions in Tables 1e3.
Monte Carlo case with nc¼ 11 are inferred from this sample.
Chain lengths and number of primary polymers as input data
for the conditional Monte Carlo architecture simulations are
sampled from the distributions shown in Figs. 4 and 5. We
also have used the full Monte Carlo generated chain lengths
and number of primary polymers as input, but the results
from this could not be distinguished from the ones we actually
are going to present. Only for smaller sample size, as will be
shown for larger molecules, it is recommendable to use the full
Monte Carlo data as input for conditional Monte Carlo to bet-
ter compare architecture samples. It must be realized, how-
ever, that the variability in architectures even for one fixed
set of n, np and nc is considerable (see e.g., Figs. 12 and 16).

Results will now be discussed in two parts. First, values and
trends of probability density functions as presented in the pre-
vious section will be presented and compared to full Monte
Carlo simulation data. Secondly, samples of molecules gener-
ated with both conditional and full Monte Carlo simulations
will be analyzed using several architectural indicators.

8.1. Values and trends of probability density functions

These are calculated using the definitions presented before
from the dead and living chain distribution Galerkin-FEM rep-
resentations. It is now interesting to calculate such values from
full Monte Carlo simulations. This required some extra effort,
since obviously such features are not normally employed in
the algorithm. Computational means had to be implemented
to analyze the two pieces of a molecule at either side of a com-
bination point. To this end the growth history of molecules
generated by full Monte Carlo simulation had to be recon-
structed from their architectures.

The probability density function describing the probability
that a molecule of given dimensions has been created by a ter-
mination by recombination reaction, as defined by Eq. (10), is
plotted in Fig. 6 as a function of chain length for the cases of
a smaller molecule of nc¼ 3 combination parts with np¼ 3
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Fig. 5. Number of primary polymers’ distribution,
PN

n¼20 nPðn; np; nc ¼ 11Þ,
of molecules consisting of 11 parts (corresponding to chain length distribution

of Fig. 4) from Galerkin-FEM method and full Monte Carlo simulations for

conditions in Tables 1e3. The minimum number of primary polymers is 20.
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primary polymers and a larger molecule of nc¼ 4 combination
parts with np¼ 12 primary polymers. The values from the full
Monte Carlo simulations feature considerable scatter due to
the limited sample size (some thousands of molecules) e
more for the smaller sample of the larger molecule e but still
we observe good agreement. These pdf’s turn out to be only
weak functions of chain length.

Fig. 7 shows the probability that a molecule of nc¼ 4 com-
bination parts has been formed from a molecule with nc1¼ 1
and a molecule with nc2¼ 3 combination parts as a function
of chain length, according to the definition of Eq. (11). Note
that this one of the two options possible for such molecules,
the other being nc1¼ nc2¼ 2. To create a sufficiently large
full Monte Carlo sample the summation of the probabilities
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Fig. 6. Combination probability <cðn; np; ncÞ as defined by Eq. (10) for 3

combination parts/3 primary polymers and 4 combination parts/12 primary

polymers as a function of chain length from Galerkin FEM and full Monte

Carlo simulations.
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Fig. 7. Probability that a molecule of nc¼ 4 combination parts has been formed

from a molecule with nc1¼ 1 and a molecule with nc2¼ 3 combination parts as

a function of chain length, n, according to Eq. (11), calculated by Galerkin

FEM and simulated by full MC. To create a sufficiently large full MC sample

the summation of the probabilities over all possible total number of primary

polymers, np (minimum 7) has been taken:
PN

np¼7 <0ðnc1 ¼ 1jn; np; nc ¼ 4Þ
e the quote implying that the probability density function has been re-normal-

ized. The inset shows the magnitude of the corresponding convolution sums

(Eq. (11), Galerkin FEM) versus chain length for both combination options:

1/3 and 2/2.
over all possible total number of primary polymers, np (mini-
mum 7) has been taken:

PN
np¼7<0ðnc1 ¼ 1jn; np; nc ¼ 4Þ e the

quote implying that the probability density function has been
re-normalized. The inset of Fig. 7 shows the magnitude of
the corresponding convolution sums (Eq. (11), Galerkin
FEM) versus chain length for both combination options: 1/3
and 2/2. Despite some scatter we again conclude that
good agreement exists between full Monte Carlo and the
Galerkin-FEM results, as well as a weak variation of the pdf
with chain length.

In Fig. 8 a complete probability density function is shown.
It represents the probability distribution of number of primary
polymers on one of the two combination parts, np1, given total
chain length, n, total number of primary polymers, np¼ 12,
total number of combination parts, nc¼ 4, and number of
combination parts on part 1, nc1¼ 1: <ðnp1jn; np ¼ 12; nc1 ¼
1; nc2 ¼ 3Þ as defined by Eq. (12). The sample of such mole-
cules generated by full Monte Carlo contains various lengths.
The comparison with Galerkin FEM, for which we can com-
pute the pdf for a specified chain length, has been made on
the basis of exactly the same various lengths. In addition
two pdf’s are shown for specified chain lengths: n¼ 4440
and 22,842. Differences at higher np1 are only visible in the
semi-logarithmic inset of Fig. 8, being caused by the small
sample size of the full Monte Carlo results.

8.2. Architectural results

One interesting source of information on the architecture of
a branched molecule formed by recombination reactions arises
when regarding the number of connecting points on the parts
of the molecules. Larger molecules may possess numerous dif-
ferent number of connecting point distributions, whereas the
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Fig. 8. Probability density function for number of primary polymers on com-

bination part 1, np1, given total chain length, n, number of primary polymers,

np¼ 12, number of combination parts, nc¼ 4, and number of combination

parts on part 1, nc1¼ 1: <ðnp1jn; np ¼ 12; nc1 ¼ 1; nc2 ¼ 3Þ (Eq. (12)). By

full MC a sample of such molecules is generated having various lengths.

For these lengths the pdf’s according to Eq. (12) are computed with Galerkin

FEM. Differences at higher np1 are due to small sample size of full MC. Also

pdf’s from Galerkin-FEM for extreme chain lengths in this sample are shown.
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smallest just have one. For instance, a molecule with one
combination point always consists of two parts with each
one connecting point, and a molecule with two combination
points always consists of two parts with one connecting point
and one part with two connecting points. However, for a mol-
ecule with three combination points two options exist. Either it
has three parts with one connecting point and one with three
connecting points or it has two with one and two with two
connecting points. Hence, a molecule of nc¼ 4 combination
parts may have two different architectures as its way of being
composed from the parts is concerned. Note that this is just
a manner of analyzing architectures rather than describing
the way the molecule has been growing, which is an inter-
mingled process of growing of the parts and coupling of them.

In Fig. 9 the frequency distribution of the number of con-
necting points per parts is shown for samples of molecules
with nc¼ 11 combination points. The plot has been obtained
by counting the parts with a certain number of connecting
points among all the molecules of the sample. By definition,
each molecule contains a number of parts with one connecting
point, hence the relative abundance of such parts is large. At
the other side of the spectrum, only very few molecules con-
tain one part with 10 connecting points (plus 10 parts with
one connecting point). Obviously, the molecules of the sam-
ples may differ in number of primary polymers, np, and chain
length, n. The samples underlying Fig. 9 are the same as those
in Figs. 4 and 5 showing the n and np distributions, respec-
tively. In the semi-logarithmic plot of Fig. 9 no difference is
visible between the results from the conditional and full Monte
Carlo architectures. Hence, we conclude that from the per-
spective of number of connecting points per part distribution
both methods yield identical results. Fig. 10 shows similar dis-
tributions for molecules with 40 combination parts, nc¼ 40.
Since such molecules are very rare it took a few days of full
Monte Carlo simulations to generate a sample of 268 mole-
cules, obviously of different lengths and number of primary

Conditional MC (119,474 molecules)
Full MC (45,563 molecules)
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Fig. 9. In a branched molecule with 10 combination points consisting of 11

combined parts, each part has between 1 and 10 connection points. The fre-

quency distribution of the number of connection points per parts is strongly

dependent on architecture. This figure shows these distributions in samples

generated by conditional and full MC. Molecules in this sample have lengths,

n, and numbers of primary polymers, np, distributed as shown in Figs. 4 and 5.
polymers. The comparison has been made with architectures
from conditional Monte Carlo simulation for the same set of
chain lengths and number of primary polymers. In the figure
the results feature equal scatter, but on average they overlap.
The curve for a sample of 10,000 molecules of specified di-
mensions (nc¼ 40, np¼ 139, n¼ 100,000) using the condi-
tional method is considerably smoother and clearly deviates
from that for the smaller samples of non-specified molecules.

During the introduction to the history backtracking algo-
rithm the concept of initial primary polymers was already de-
scribed; their existence is caused by the fact that growth of
a molecule may be initiated at different sites and different in-
stants in time. The initial primary polymers form the starting
point for an equal number of growth sequences that ultimately
all merge together. All molecules formed by recombination
termination possess at least one initial primary polymer. A
molecule consisting of nc-combination parts may have an
equal number of initial primary polymers at maximum.
Fig. 11 shows the frequency distribution of number of initial
primary polymers for the samples from full and conditional
Monte Carlo sampling of nc¼ 11 introduced before. About
10% has just one initial primary polymer, roughly one-third
has 3 and very few have 9 initial primary polymers; none
out of these samples have the theoretical maximum of 11 ini-
tial primary polymers. The curves from the conditional and
full Monte Carlo sampling exactly overlap for the largest parts
of the curves, except for the rare molecules in the higher num-
ber of initial primary polymer region, only visible in the semi-
logarithmic inset of Fig. 11. Hence we conclude that also from
the perspective of this particular architectural property both
the Monte Carlo methods lead to identical results. Fig. 12 con-
firms this for samples of larger molecules (nc¼ 40) e the
same as used to construct Fig. 10 e be it with a larger scatter
due to the much smaller sample sizes.

Fig. 13 compares the lengths of initial primary polymers as
a function of the number of initial primary polymers in the
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Fig. 10. Distribution of number of connection points for samples of a large

molecule, nc¼ 40. The varying chain lengths, n, and number of primary poly-

mers, np, for the conditional MC sample are taken identical to those generated

by full MC. These necessarily small samples show considerable scatter, but

globally agree. For comparison, the distribution of a larger sample of large

molecules from conditional MC for a single n, np, nc-combination is shown.
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molecule. The average length (inset) is seen to decrease with
the number of initial primary polymers; the curves from the
two Monte Carlo methods practically overlap. The length dis-
tributions of the initial primary polymer for molecules with
just one such primary polymer are also observed to agree
very well. Fig. 14 shows that the length distributions of the
last grown primary polymer of the molecules agree equally
well. We hence conclude that also with respect to the details
of these special primary polymers the conditional and full
Monte Carlo methods yield identical results.

Finally, we show the results of comparisons on a third ar-
chitectural qualifier: the radius of gyration contraction factor
in Figs. 15e17. The contraction factor distributions for the
samples with nc¼ 11 combination parts (same sample as
above) from both methods are fairly smooth and feature
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Fig. 11. A branched molecule with 10 combination points has grown from at

least 1 and at maximum 11 initial primary polymers, strongly dependent on

architecture. This figure shows the frequency distribution for the same samples

as in Fig. 9 generated by conditional and full MC. Maximum number found

from the former is 9 (2 molecules) and for the latter is 8 (1 molecule).
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Fig. 12. Frequency distribution number of initial primary polymers for the

same samples of large molecules, nc¼ 40, as in Fig. 10 generated by condi-

tional and full MC. Although the theoretical lower and upper limits are 1

and 40, in these samples they turn out to be 3 and 15. Small samples from

both MC methods globally agree, while the larger conditional MC sample

for one n, np, nc-combination is more regular and lightly shifted to higher

numbers.
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Fig. 13. The inset shows the average length of initial primary polymers as

a function of the number of initial molecules resulting from conditional and

full MC, same samples as in Fig. 9, overall length distribution in Fig. 4.

Such primary polymers turn out to be smaller when their number per molecule

is larger. The length distribution of the initial primary polymer for molecules

containing a single one from both MC methods shows good agreement.
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Fig. 14. Length distribution of last grown primary polymer for the samples

with nc¼ 11 of Fig. 9 from conditional and full MC, showing good agreement.
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the architectures [10]. Samples used, for nc¼ 11, are the same as in Fig. 9.

Results from conditional and full MC show excellent agreement.
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excellent overlap. Again, the smaller samples of larger mole-
cules (268) lead to more scatter, but still the similarity between
the distributions is strong. This is especially true when com-
paring these distributions to the one obtained for a much larger
sample (10,000) of specified molecules, which is considerably
shifted towards the weaker contraction region.

To illustrate the usefulness of the conditional MC method
as regards finding the influence of kinetics or other circum-
stances on architectures, the relation between termination
mechanism and architecture is now discussed. We have posed
ourselves the following question. Suppose, we have molecules
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Fig. 16. Radius of gyration contraction factor distribution as calculated from

the architectures of large molecules, nc¼ 40 [10]. Samples used are the

same as in Fig. 10. The smaller samples from conditional and full MC

show, despite fair scatter, good agreement. These larger molecules, more

strongly branched, feature more important contraction than the smaller ones

in Fig. 15. Again, the conditional MC results for one single n, np, nc-combina-

tion are more regular, but they show considerably weaker contraction.
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without recombination termination (ktd¼ 107 m3 kmol�1 s�1) and with recom-

bination (ktc¼ ktd¼ 5� 106 m3 kmol�1 s�1) and further identical kinetic con-

ditions. All molecules have chain length n¼ 20,000 and N¼ 25 branch points.

The recombined molecules consist of 9 recombination parts. The plot indicates

that molecules made by disproportionation only are more compact than those

of the same dimensions (n,N) made by both recombination and recombination.

Sample sizes: 100,000 molecules.
of identical dimensions in terms of chain length and number of
branch points, but different in termination mechanism. One
kind has been made without recombination, so disproportion-
ation only, while the other did undergo recombination termina-
tion indeed. Which of these should be expected to be more
compact as measured from the radius of gyration contraction
factor? Before comparing the architectures, it should be noted
that the averages in chain length and number of branch points
of molecules made in the presence of recombination are higher
than those made without it. Taking molecules with identical
dimensions therefore implies sampling from the lower end
of the whole population of chain lengths and number of branch
points for the first category and from the higher end for the
second. The answer on the question on compactness is given
in Fig. 17 for the example of chain length n¼ 20,000 and num-
ber of branch points, N¼ 25. The kinetic conditions are identi-
cal, in both cases the overall termination rate coefficient equals
107 m3 kmol�1 s�1, but in one case ktd¼ 107 m3 kmol�1 s�1,
while in the other ktc¼ ktd¼ 5.106 m3 kmol�1 s�1. Architec-
tures were calculated for samples of 100,000 molecules in
both cases, a matter of few hours computation time. The conclu-
sion is that the molecules made by disproportionation turn out
to be slightly, but clearly more compact than those having expe-
rienced recombination. Note that this does not mean that mol-
ecules having undergone recombination in general are less
compact than molecules of the other category. Partly, the result
of Fig. 17 must be attributed to what was observed about the
sampling of molecules of identical dimensions, namely that
this happens from opposite parts of the complete populations.
It should also be noted that generating samples of 100,000 mol-
ecules of exactly these dimensions is practically impossible
with the full MC method. In view of the small difference be-
tween the two kinds of molecules, such a conclusion could
not possibly have been drawn from full MC.

9. Conclusions and discussion

Our primary goal in this article is to develop a model to find
the architectures of polymer molecules of given chain length
and number of branch points, polymerized by a radical mech-
anism with transfer to polymer and recombination termination.
It was precisely this conditionality that the molecules are of
specified dimensions e and fixed but as yet unknown architec-
ture e that forced us to think of a method that could find the
history of chemical events leading to the architecture in anti-
chronological order. In this particular kinetic case these events
are condensed to two types both involving branch point forma-
tion or chain initiation. In one type this reaction is followed
by termination without recombination, resulting in addition
of an arm. In the other type simultaneous branch formation/
initiation steps at two different molecules are followed by a
recombination termination step connecting these molecules.
Considering the well-known radical polymerization process
in this manner offers a nice view on the essential parts of
the growth of a branched structure, as shown in Fig. 2. The
probability, that one or the other event is happening follows
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from probability density functions that directly are inferred
from concentration distributions of living and dead molecules
of certain dimensions. As has been argued in previous work
[10], apart from the chain length dimensions and number of
branch points, the number of combination points as a third di-
mension has to be taken into account in an explicit manner.
The importance of the number of combination points for the
architecture is obvious, if one realizes its impact on the con-
nectivity possibilities in a molecule. The 3D-concentration
distribution can be obtained in several ways, by solving
3D-population balances or by a full Monte Carlo scheme
[11e13]. We choose to solve the population balances using
an improved version of the earlier published method [10]
(see Appendix), which turned out to be the most efficient man-
ner finding the concentrations in a sufficiently accurate way.
Finally, the growth history backtracking algorithm (see Fig. 3)
constructs possible growth paths using the concept of the two
architecture determining events and the proper probability
density functions and thus finds statistically representative
samples of architectures.

To test the validity of our approach we performed several
comparisons to the full Monte Carlo scheme. Although the lat-
ter does not naturally provide the probability density functions
required for the conditional MC method, it still contains the
information to infer these functions. By developing means to
infer this information from the full MC method we could com-
pare our conditional method to the full MC method on the
level of probability density functions. However, this could
only be realized for small molecules, since the full MC
method does not generate sufficiently large samples of larger
molecules in reasonable computation time to warrant statisti-
cally sound conclusions e which precisely constitutes a major
incentive to invent the conditional MC method after all. Com-
parisons to full MC have also been performed on the level of
resulting architectures, again and for the same reason for small
molecules only. In all cases we found sufficient agreement to
conclude that both methods represent the same architectural
growth process e be it in quite different ways.

Thus, the validity of the conditional MC method has been
proven for the case of a CSTR at steady state with transfer
to polymer and recombination termination. As regards the ex-
tendibility of the conditional MC method to other reactor and
kinetic systems in general it is required that the proper concen-
tration distributions are available. A very easy extension is
including transfer to small molecules reactions. Adding such
reactions does not lead to qualitatively different architectures,
but rather have a quantitative effect similar to increasing the
disproportionation termination rate. Another possible exten-
sion is that to batch reactors. In the present case we need
3D chain length/number of branch points/number of combina-
tion point distributions. For a batch reactor with the same
kinetics this distribution should be available as a function of
conversion. Especially interesting are extensions to those sys-
tems that cannot be dealt with using the full MC method, like
radical polymerization with chain length dependent termina-
tion or accounting for limited accessibility of the inner part
of larger molecules to the transfer to polymer reaction. In
this case the termination depends on the overall size of
macro-radicals, which is a quantity not explicitly featuring
in the full MC method, for which this mechanism therefore
poses a serious fundamental problem. In contrast, in the con-
ditional MC method the implementation of chain length
dependent termination is straightforward, since it does not
require a modification at all, once the proper probability den-
sity functions are constructed. A limited accessibility of the
inner part of molecules to transfer to polymer, not accounted
for in the present work, again gives rise to fundamental prob-
lems in the full MC method, since the growing architecture is
not explicitly featuring in its concept. The architectural infor-
mation required to distinguish between ‘inside’ and ‘outside’
of a molecule indeed is available in the conditional MC
method, which in principle would offer a key to solving this
complex problem. Summarizing, we conclude that several op-
tions exist to extend the conditional MC to a wider scope of
applications.

Appendix A. Modified discrete Laguerre polynomials for
fast evaluation of convolution sums

Finding the rate rcðn; np; ncÞ and the pdf <ðnc1jn; np; ncÞ,
Eqs. (8) and (11) of the main text, forms a huge combinatorial
problem, since in principle all possible combinations of
chain length, number of primary polymers and number of
combined parts have to be computed in order to evaluate the
convolution sums. We have developed an efficient method
that completes this task at acceptable computational effort. It
employs the leading moments of the individual distributions
R(n,np,nc) in combination with a global representation of the
convolution sums based on the Galerkin h-p method, also
used in PREDICI� [14].

Discrete Galerkin methods

A discrete Galerkin method for the representation of chain
length distributions has been introduced by Wulkow [14] in a
weighted finite element h-p-description. This method has
already found many applications as it is implemented in the
PREDICI� software package. The earlier studied weighted
method (Refs. [8,9] in Ref. [6]) makes use of a global repre-
sentation, based on discrete orthogonal Laguerre polynomials
for the whole chain length axis, and local representations on
chain length intervals, based on discrete Chebyshev poly-
nomials. The global representation allows fast handling and
has some interesting properties, as for instance a direct relation
to the leading moments of a distribution. However, its success
depends on the form of the distributions to be approximated.
The locally adapted h-p-representation can be highly accurate
by choosing chain length intervals sufficiently small and the
order sufficiently high. Here no weight function is employed.
In this paper we will make use of both approaches and review
the weighed method first.

The basic form of the global representation is, in one (chain
length) dimension:
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Jr;aðnÞ ¼ ð1� rÞ1þa

�
n� 1þ a

n� 1

	
rn�1; ðA1Þ

which for a¼ 0 becomes a Flory distribution. The associated
orthogonal polynomials are modified discrete Laguerre poly-
nomials, as follows:

lsðn; r;aÞ ¼
Xs

t¼0

rs�tðr� 1Þt
�

sþa

s� t

	�
n� 1

t

	
; ðA2Þ

where s is the order of the polynomial. Distributions are
represented as:

Pr;aðnÞ ¼Jr;aðnÞ
Xs

t¼0

atðnÞltðn; r;aÞ; ðA3Þ

where the at are the expansion coefficients, to be found
in varying ways, depending from the problem at hand. The
parameters r and a are related to the leading moments by:

r¼ m0m2 �m2
1� m1m0þ m2

0

m0m2� m2
1

a¼ 2m2
1 �m1m0� m0m2

m0m2� m2
1� m1m0þ m2

0;
ðA4Þ

while the higher coefficients are related to the moments by:

ms ¼
Xs

t¼0

bstatg
r;a
t ; ðA5Þ

where the bst follows as:

nt ¼
Xs

t¼0

bstltðnÞ ðA6Þ

and g
r;a
t comes from the orthogonality relation:

XN
n¼1

lsðnÞltðnÞJr;aðnÞ ¼ dstg
r;a
s ; gr;a

s ¼ rs

�
sþ a

s

	
: ðA7Þ

The local approximation is based on Chebyshev polynomials
of the first kind, ls(x), on x-intervals [�1,1], corresponding
to chain length intervals [n1,n2]. The expansion coefficients
at follow from the distribution values P(xu) by:

at ¼
2

s

Xs

u¼1

PðxuÞltðxuÞ

¼ 2

s

Xs

u¼1

P



cos

�
pðu� 1

2

�
s

�

cos

�
ptðu� 1

2

�
s

�
ðA8Þ

The distribution is then approximated by the h-p
representation:

PðxÞ ¼
Xs�1

t¼0

atltðxÞ �
1

2
a0: ðA9Þ
A fast and accurate manner to evaluate the numerous convolu-
tion sums mentioned above we found to proceed is as follows.
An accurate solution of the 3D-problem was found using the
Galerkin h-p method to solve, for each number of branch
points, a 1D (chain length) problem. This proceeds in a recur-
sive manner, since the balance equations for i branch points
can be solved using the solutions for those <i. It must be re-
alized that these solutions should be accurate, since even small
errors may propagate from lower through higher i, in our case
up to i¼ 100. For this reason, the Galerkin h-p method is
employed here. This yields a 2D-solution (n,i). To solve the
complete 3D-problem, two additional number of combination
point moments is computed in a manner explained elsewhere
[9]. Further following this work on the basis of the three com-
bination point moments and using another type of orthogonal
polynomials, the Krawtchouk polynomials, we arrive at a full
solution of the 3D-set. This solution consists of h-p represen-
tations for each individual combination of number of branch
points and combination points, around 5000 in total. Typically,
one h-p representation in this case consists of 15 coefficients
(order 15) at around 20 intervals. It includes the interval
boundaries as well as the leading moments of the distributions.

In order to find a convolution sum Pc(n) from two dis-
tributions, P1 and P2 as a distribution in n, PcðnÞ ¼Pn�1

m¼1 P1ðmÞP2ðn� mÞ, we calculate the moments of Pc

from those of P1 and P2 (stored in their h-p representations):
m1(0.k) and m2(0.k). For this we use the expression:

mcðjÞ ¼
Xk

i¼0

aðn; iÞm1ðiÞm2ðj� iÞ; ðA10Þ

where a(n,i) are the elements of a coefficient matrix:

a¼

2
666666664

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

.

.

3
777777775
: ðA11Þ

Using the relations between moments and the expansion coef-
ficients in the global representation given above, we obtain
these coefficients and store them. In the architectures algo-
rithm they are easily retrieved for point- or distribution-wise
evaluation of the convolution sum of any two distributions
P1 and P2.

Performance

The accuracy and computation speed are now demonstrated
for two known distributions to be convoluted:

P1 ¼ ð1� r1Þr
ðn�1Þ
1 n2; P2 ¼ ð1� r2Þr

ðn�1Þ
2 n3;

r1 ¼ 1� 1=1000; r2 ¼ 1� 1=3000: ðA12Þ
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P1 and P2 are relatively narrow distributions being represen-
tative for the Rn,i,k (main text, Eq. (3)) in the underlying
problem. Obviously, in this example, the convolution distri-
bution Pc(n) can be calculated directly for each n. Now first,
we approximate the convolution distribution Pc(n) using the
accurate local h-p representation by first finding the h-p pre-
sentations of P1 and P2 themselves and then evaluating it for
Pc using an algorithm similar to that used in PREDICI�. In-
terval length and order of the Chebyshev polynomials were
not optimized as happens in the package. Instead, we em-
ployed 20 intervals (logarithmically equidistant) and order
15. This was a slow procedure, but when using interval
and order optimization as in PREDICI� typically 0.5e1 s
CPU-time is required for one complete convolution operation
with simultaneous grid adaptation. The relative error DPrel

c ¼P105

n¼1 jPc � Papp
c j=

P105

n¼1 Pc turned out to be 3.7� 10�9.
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Fig. A1. Convolution distribution Pc/Pc
max and errors of global and local

approximations. Average error local approximation 3.7� 10�9 e too small

to be visible on this figure’s scale.
Secondly, we applied the global approximation, computing
mc from m1 and m2 and subsequent finding r, a d the coeffi-
cients ac. This turned out to be very fast, taking 0.05 s CPU-
time, while the relative error was still small, 4.1� 10�5. In
this case taking up to 21 Laguerre polynomials with the equal
number of expansion coefficients turned out to be optimal.

In a normal distribution plot both approximations to the eye
coincide with the exact solution. Hence, to illustrate the differ-
ence, the error DPc as relative to the maximum of Pc was plot-
ted in Fig. A1, together with the (lower part of) distribution
itself. The error of the global approximation here appears as
the wavy curve, but in fact that of the local solution is still
invisible at this scale.

We conclude that with the global approximation a fast and
sufficiently accurate procedure has been found to evaluate the
numerous convolution sums, Eq. (3) of main text, as a part of
the underlying architectures problem.

References

[1] Zimm BH, Stockmeyer WH. J Chem Phys 1949;17:1301e14.

[2] Bick DK, McLeish TCB. Phys Rev Lett 1996;76(14):2587e90.

[3] Read DJ, McLeish TCB. Macromolecules 2001;34:1928e45.

[4] Iedema PD, Slot JJM, Kim D-M, Hoefsloot HCJ. Macromol Theory

Simul 2004;13:400e18.

[5] Costeux S, Wood-Adams P, Beigzadeh D. Macromolecules 2002;35:

2514e28.

[6] Hoefsloot HCJ, Iedema PD. Macromol Theory Simul 2003;12:484e98.

[7] Iedema PD, Hoefsloot HCJ. Macromol Symp 2004;206:93e106.

[8] Iedema PD, Hoefsloot HCJ. Polymer 2004;17:6071e82.

[9] Iedema PD, Hoefsloot HCJ. Macromol Theory Simul 2005;14:505e18.

[10] Iedema PD, Hoefsloot HCJ. Macromolecules 2006;39:3081e8.

[11] Tobita H. Polym React Eng 1993;3:379.

[12] Tobita H. J Polym Sci B Polym Phys 1994;32:911.

[13] Tobita H. e-Polymers, http://www.e-polymers.org, 2004;032.

[14] Wulkow M. Macromol Theory Simul 1996;5:393e416.

[15] Buback M, Muller E, Russell GT. J Phys Chem A 2006;110:3222e30.

http://www.e-polymers.org

	Conditional Monte Carlo sampling to find branching architectures of polymers from radical polymerizations with transfer to polymer and recombination termination
	Introduction
	Architectures generation by conditional Monte Carlo sampling
	The architecture generation algorithm
	History backtracking algorithm
	Growth without or with recombination
	Backtracking example

	Generating architectures
	Probability density functions
	How to analyze primary polymer sequences and lengths
	Results
	Values and trends of probability density functions
	Architectural results

	Conclusions and discussion
	Modified discrete Laguerre polynomials for fast evaluation of convolution sums
	Discrete Galerkin methods
	Performance

	References


